
Graph Visualization Through Collaborative Node Grouping

ABSTRACT

The node-link graph visualization with more than a hundred nodes
is a common yet challenging task. Traditional methods either create
the layout with an abundance of visual clutters and slower the anal-
ysis in details, or oversimplify the topology through graph cluster-
ing and filtering. In this paper, we propose a novel method, namely
Collaborative Node Grouping (CNG). CNG condenses the graph
and reduces the visual complexity without losing any graph infor-
mation in the resulting representation. The CNG-compressed graph
preserves many critical features from the original graph, making
it easy for human understanding and analysis. CNG supports di-
rected, weighted and dynamic graphs through natural extensions.
We have conducted case and user studies in several real-world sce-
narios, e.g. over the security and traffic graphs. Results show that
our method is effective both quantitatively in terms of the graph
compression rate and qualitatively from the user’s feedbacks. Per-
formance evaluation also confirms that CNG can scale to graphs
with a million nodes in a standard desktop machine.

1 INTRODUCTION

Graphs representing the relationship data are one of the most popu-
lar information genres in reality. Real-world graphs are essentially
large, especially lately as the human’s ability to retrieve and aggre-
gate information grows tremendously. Understanding these large
graphs are crucial in many cases. For example, a network/cloud
administrator needs to keep track of the traffic distribution among
servers and hosts for a better network/virtual-machine optimization
during the resource planning stage. Upon security events, they also
need to access the latest traffic graph to increase situation aware-
ness for more responsive troubleshootings. In a broader Internet
scenario, an SNS website owner/user depends on the knowledge of
the global/egocentric social network to design more effective pro-
motion strategies to expand the network or for online advertising.

Visualization is a well-known technology among a short list to
access and analyze large graphs. However, visualizing a graph with
more than a hundred nodes faces two fundamental challenges. First,
the classical force-directed methods in most cases fail to calculate
an optimally aesthetic graph layout in real time (∼1s). Second, even
if a huge graph layout is computed, the visual clutters (mainly the
edge crossings) created by the straightline node-link representation
prohibit the user from understanding the graph in details, which is
important for analytical tasks.

Existing solutions to overcome these challenges fall into three
categories. The first class focuses on the efficient drawing algo-
rithms of the huge graph [22] [26] [17], balancing the computation
time and layout aesthetics. The algorithms reduce the visual clut-
ters by minimizing the edge crossings, but still the non-planar real-
world graphs are too dense to understand by the users and hard for
the drill-down analysis on the details. The second class solves the
problem by directly reducing the complexity of the underlying data,
through graph clustering [5] [4] [27] and filtering [24] [33]. This
approach can create abstracted graphs simple enough for human
understanding and feasible as the starting point of an analysis. The
drawbacks are also clear, the abstracted graph often distorts much

from the original topology and many critical details and contexts
are lost which can be misleading in the analysis process. The third
class are the best-effort methods to alleviate the visual clutter with-
out reducing the data. They include the edge bundling approaches
to visually cluster group of edges, and the huge graph navigation
methods through hyperbolic views [28] [29] and the fisheye distor-
tion [15]. Still there are other drawing formats of the huge graph
rather than the node-link representation, e.g. the matrix [19] and
NodeTrix [20], but these will be out of the scope of this paper.

In this paper, our ultimate goal is to create an abstracted and
smaller-sized node-link representation of the huge graph without
losing its topology and detailed graph information, so that both the
layout computation complexity and the visual complexity are re-
duced simultaneously. We are inspired by the overwhelming broad-
cast patterns in the security graphs (Figure 7(a)), where the numer-
ous standalone recipients are in the same position within the graph.
This creates considerable topology redundancies as well as the un-
necessary visual clutters. Our idea is to condense the graph by re-
moving the topology redundancy while keeping the whole graph in-
formation intact, rather than the clustering and filtering which can
drop valuable pieces.

In more detail, we propose the Collaborative Node Grouping
(CNG) graph compression method. CNG groups the nodes with the
same neighbor set together as a larger mega-node and regenerates
a compressed graph for the subsequent visualization and analysis.
A similar pairing idea has been introduced by Davis and Hu [10]
in the huge graph coarsening process, but only pairwise grouping is
considered. Also the visualization in [10] still works on the origi-
nal graph. Beyond the CNG of the basic graph, we extend in this
paper to support the directed, weighted and dynamic graphs evolv-
ing over time, which are more useful in reality and for many task-
specific graph analytics. To further reduce the graph complexity,
we also introduce the fuzzy CNG method according to the neighbor
set based pairwise node similarity. It is shown through evaluations
over the real-world graphs that, in most cases, the visual complexity
(measured by the number of edges) can be reduced more than ten
times after a basic CNG. The computational complexity introduced
by CNG is much lower than the latest applicable huge graph layout
algorithm [22], scaling to support graphs with a million nodes.

Towards a user-friendly representation of the CNG-compressed
graph, we have customized the visual encodings of the compressed
graph visualization. Many interactions are introduced to accelerate
the compressed graph visual analysis, including the graph naviga-
tion methods, the switches between the compressed and original
graphs, and the user-defined node groupings through simple mouse
actions. Stable layouts are computed in a best-effort manner to keep
the user’s momentum between consecutive graph views, along with
the staged animations to smooth the visual transition.

Finally, we demonstrate through four case studies that graph vi-
sualization tools with CNG can significantly improve the domain
user’s capability in their graph analysis related tasks. For exam-
ple, in a situation awareness scenario, the security admin can dis-
cover the potential noteworthy events with the CNG-enabled traf-
fic analysis tool more easily and quickly. Controlled studies and
user feedbacks also show better performance and adoption of the
CNG-enabled graph visualization tool in the large graph under-
standing and detail-accessing aspects, compared to the traditional
graph views employed by the commercial tools.



2 RELATED WORK

Classical force-directed algorithms with either the spring embedder
[12] [13] or the graph theoretic distance based stress model [25]
[16] generate visually aesthetic layouts for small graphs, but fail to
scale to graphs with a thousand nodes, even with certain aesthetics
trade-offs. The root cause is the over O(N2LogN) computational
complexity. Therefore, the major theme of the huge graph drawing
algorithms is the balance of the computational complexity and the
layout quality. In this part, we shall focus on the algorithms for the
straight-line drawing of huge general graphs.

A number of huge graph drawing algorithms [14] [22] apply an
iterative coarsening process to reduce the graph to smaller ones un-
til the resulting graph can be handled by the classical algorithms.
Then the graph layouts are refined recursively from the finest coars-
ened graph back to the original huge graph. This is generally called
the multi-level approach. These algorithms differ in the coarsen-
ing, refining and the methods to layout the graph recursively. The
coarsening can be through the pairwise node grouping based on the
independent edge collapsing [18], or directly replacing the graph
with the independent vertex set [6], or a filtered vertex set [14].
The refinement of each level of graph can be through the classical
layouts [22] or computed by the weighted center of several land-
mark nodes in the previous level [11]. The layout algorithms are
generally the classical ones, e.g. the spring embedder [22], stress-
model [14] and MDS [11]. The multi-level approaches scale to gen-
eral graphs of 105 nodes with a reasonable time and layout quality.

For graphs in an extreme scale (e.g. with millions of nodes),
the high-dimensional embedding (HDE) algorithm [17] is pro-
posed. HDE chooses k centers from the huge graph and forms a
k-dimensional coordinate system by the distance to all the k centers.
Each node with the k-dimensional coordinate is projected back to
the two dimensions through carefully selected linear combinations.
ACE [26] is another fast algorithm to draw extreme-scale graphs.
ACE is based on the Hall’s model to minimize a pairwise weighted
quadratic energy. Both ACE and HDE can compute a drawing for
graphs with 105 ∼ 106 nodes in a minute, but its usage are limited
to grid-like graphs. For the real-world huge graphs with scale-free
and small-world features, their layouts are not satisfying. For a
more extensive introduction of huge graph drawing algorithms, the
reader may refer to the survey by Hu [23].

In parallel with the direct drawing, another category of methods
visualize the huge graph through the data reduction. A number of
works in the literature generate hierarchies from the graph by geo-
metric clustering [30], graph-theoretic clustering, multi-level graph
partitioning [5] or graph coarsening [15]. The resultant hierarchi-
cal tree helps to create a multi-level view [30] [15] or a clustered
view [5] [4] [27] of the huge graph. These visual abstractions work
well in showing the graph topology for an overview purpose by hid-
ing many details. To access the details, some provides navigation
methods to traverse the graph hierarchy [4]. The second graph re-
duction method tries to filter the weak edges according to the edge
betweenness centrality [24]. A minimal spanning tree can be con-
structed to significantly reduce the visual clutter and leave a back-
bone of the graph [33]. Graph nodes can also be filtered by the
ranking of any node/link attribute values. The PivotGraph [34], a
similar work to ours, groups nodes by their attribute values, but
does not focus on showing the graph topology.

The other works on the huge graph visualization can be orthog-
onal to the above methods. The edge bundling approaches [21] [9]
carefully select control points for each edge according to the graph
structure. The edges are then geometrically clustered through the
control points to reduce the visual clutter. The hyperbolic visualiz-
ers [28] [29] layout the tree-like large graph in a space-infinite hy-
perbolic plane and then map the graph back to the Euclidean space.
The viewing and navigation experience is rather pleasant when ap-
plying to the large graphs. The other navigation methods, e.g. the

(a) Original graph (b) Compressed graph

Figure 1: Collaborative node grouping on a security graph.

“overview + detail” through a tree navigator [4] and the Degree-of-
Interest based context subgraph [32] are also applicable in the huge
graph visualizations.

3 COLLABORATIVE NODE GROUPING AND THE COM-
PRESSED GRAPH

3.1 Basic Idea
The basic idea of our approach is to aggregate nodes with the same
neighbor set in the graph together into groups and construct a new
graph for visualization. Our idea is motivated by the observa-
tion that most real-world graphs have considerable topology redun-
dancy. For example in Figure 1(a), the host “192.168.2.23” con-
nects to two hub nodes and is surrounded by three other hosts with
exactly the same connection pattern. Though visually aesthetic, the
redundant nodes and links distract the user in understanding the
graph information, especially when such a graph is embedded as
part of a large graph.

We name our approach Collaborative Node Grouping (CNG),
after the Collaborative Filtering (CF) technique developed in the
web and recommendation researches. CF predicts the interests of
a user from the other users with the same preference (buying the
same set of items). Essentially, CNG over the user-item bipartite
graph will group the users according to their item preferences, and
items according to the user group.

The new graph after CNG is called the compressed graph (Fig-
ure 1(b)) from the original graph (Figure 1(a)). Compared to the
existing large graph layout, clustering and filtering approaches, the
compressed graph achieves both significant visual complexity re-
duction (Section 4.5) and zero graph information loss in the rep-
resentation (Section 3.2). Since the compressed graph is still in a
node-link format, the existing approaches, especially the graph nav-
igation methods, can be applied over CNG to further improve the
visualization.

3.2 The Compressed Graph
The compressed graph has two kinds of nodes (Figure 1(b)): the
single-node from the original graph (hollow) and the mega-node
grouped from multiple sub-nodes in the original graph (filled).
Each link in the compressed graph is aggregated from the links
between every pair of sub-nodes/single-nodes belonging to the two
endpoints respectively. One basic property of the compressed graph
is, each mega-node will either have no intra-group link or the mega-
node is a clique. Note that in the former case, the sub-nodes within
each mega-node are connected by 2-hop in the original graph. The
compressed graph preserves many valuable features from the orig-
inal graph (except for the fuzzy CNG), making it eligible for the
visual representation.

Graph integrity. We validate this property by showing that the
original graph can be restored uniquely from the compressed graph:
first, collapse each mega-node into a collection of isolated nodes or
a clique of nodes according to the type and size encoding associated
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Figure 2: CNG algorithm examples, from the original graph to the
compressed graph. The left part of each subfigure is the graph ad-
jacency matrix and the right part is the corresponding node-link
graph. The smaller nodes indicate the single-nodes and the larger
nodes in the compressed graph indicate the mega-nodes. (a) Basic
CNG; (b) CNG for directed graphs. “x” in each matrix cell indi-
cates a “to” direction, “o” indicates a “from” direction; (c) CNG
for weighted graphs. The weight is labeled on each link; (d) CNG
on a dynamic graph with two time windows.

with the mega-node; second, add a link between every two nodes
whose previous mega-nodes have a link in the compressed graph.

Shortest path. Consider any two nodes A and B in the original
graph and assume A and B are not grouped together in the com-
pressed graph. The shortest path from the mega-node of A to the
mega-node of B in the compressed graph is the path by replacing
each node in the original “A to B” shortest path to their mega-nodes
in the compressed graph, with the same path length. For nodes
within the same mega-node, their shortest path is of length one or
two.

The proof is completed by showing that any two nodes in such a
shortest path of the original graph can not be grouped in the com-
pressed graph. Consider node C and D on the shortest path from A
to B, in case C and D can be grouped together, indicating the same
connection pattern of C and D, then C can directly link to the next
hop of D and also the preceding hop of C can directly link to D,
making the path not a shortest one.

Graph connectivity. By the shortest-path preserving property,
there will be no shortest path between two mega-nodes in the
compressed graph unless there is one between the original nodes.
Therefore, the disconnected nodes are still disconnected in the com-
pressed graph. This property also suggests that CNG can be con-
ducted separately over each connected component of a large graph.

Visual node affinity. Since most layout algorithms employ
shortest-path distance based heuristics, the nodes with a smaller
shortest path in the original graph and are closer visually will also
be closer to each other in the compressed graph as mega-nodes.

Uniqueness. Each original graph will have only one compressed
graph after the basic CNG, since the algorithm is deterministic
(Section 4.1).

4 COMPRESSION ALGORITHM

In this section, we introduce the basic CNG compression algorithm
and its extensions to support several graph variations and the control
of the compression rate. Before that, we first define the terminolo-
gies used throughout the algorithm description.

Definition. Let G = (V,E) be a directed, weighted and connected
original graph where V = {v1, ...,vn} and E = {e1, ...,em} denote

the node and link set. Let W be the graph adjacency matrix where
wi j > 0 indicates a link from vi to v j, with wi j denoting the link
weight. In each row of W , Ri = {wi1, ...,win} denotes the row vector
for node vi, representing its connection pattern. The compressed
graph after CNG is denoted as G∗ = (V ∗,E∗). The compression
rate is defined by Γ = 1− |V

∗|
|V | (1− |E

∗|
|E| in Section 4.5).

4.1 Basic Algorithm

The basic algorithm takes the graph as a simple, undirected and
unweighted one by setting wii = 0 and wi j = w ji = 1 for any wi j > 0.

Basic Collaborative Node Grouping. On graph G, order its
node list by the corresponding row vectors Ri(i = 1, ...,n). For any
collection of nodes with the same row vector (including the single
outstanding node), aggregate them into a new mega-node/single-
node Gvi = {vi1 , ...,vik}. All Gvi form the node set V ∗ for the com-
pressed graph G∗. Also let f vi = vi1 denote the first sub-node in
Gvi. The link set E∗ in G∗ are generated by simply replacing all
f vi with Gvi in the original link set, and removing all the links not
incident to any f vi.

Figure 2(a) gives an example of the basic CNG over a small
graph with 11 nodes.

Completeness: Any two nodes in the compressed graph G∗ have
different row vectors.

4.2 Extensions

Real-world graphs are often directed, weighted and evolving over
time, we extend the basic CNG algorithm to support these natures
by generalizing the definition of the adjacency matrix and the cor-
responding row rectors.

Directed Graph. The adjacency matrix W is unfolded to en-
code the connection directions for each node. Each row vector
Ri(i = 1, ...,n) becomes Ri = {wi(−n), ...,wi(−1),wi1, ...,win} hav-
ing wi(− j) = w ji for j = 1, ...,n. Figure 2(b) gives an example.

Weighted Graph. The adjacency matrix W is switched to the
weighted one by mapping one numeric data attribute of link (i, j)
(e.g. flow count in a traffic graph) to wi j in the matrix, as shown in
Figure 2(c). To further increase the compression rate, discretization
of the link weight is allowed: first transform all link weights into
wi j ∈ (0,1] by either linear or non-linear normalization, then pick a
bin count B(B≥ 1) and regenerate link weights by wi j = dwi j×Be.

Dynamic Graph. The dynamic graph is constructed by aggre-
gating graphs in consecutive time windows and recording the times-
tamp on each link upon the aggregation. Given a dynamic graph
GT (T = [T0,T1]), on each link (i, j) of GT , there will be a timed
list Li j = (t0 : w0

i j, ..., tc : wc
i j),T0 ≤ t0 < ... < tc ≤ T1, indicating the

link’s temporal pattern with wi j = ∑
c
k=1 wk

i j. To apply CNG on dy-
namic graphs, the adjacency matrix W and the row vector Ri are up-
dated by replacing the numeric wi j to the list-valued Li j. An exam-
ple is given in Figure 2(d). Similarly to the weighted CNG, the time
window size can be tuned to adjust the compression rate. Given a
time window count B, each timestamp tk in Li j is discretized by
tk = d tk−T0

T1−T0
×Be.

The rest of the algorithm for these graph variations follows the
basic CNG algorithm. Note that our treatments on the directed,
weighted and dynamic graphs are orthogonal to each other, there-
fore can be combined together to deal with graphs with two or three
of these natures. The visual explanation of the CNG extensions
are also shown in Figure 2: beyond the basic CNG, the extensions
not only consider the neighbor set of each node, but also consider
the different kind of connections between the node and each of its
neighbors, including the direction (“to”, “from”, “bidirectional”),
frequency/weight and the temporal pattern.

Supporting Clique.
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Figure 3: Impacts of the diagonal cells to CNG results on undi-
rected and unweighted graphs. (a) Set wii = 0, the mega-nodes have
no intra-group links; (b) Set wii = 1, the mega-node as a clique is
supported, but most other nodes are prohibited in the CNG; (c) The
optimal CNG where the two approaches are combined.
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Figure 4: CNG with different compression rates: (a) Original CNG;
(b) Fuzzy CNG with similarity threshold ξ = 0.66; (c) CNG com-
pression level control with β = 0.66.

As shown in Figure 3(a), one feature of the basic CNG is that the
nodes grouped together do not have any intra-group link. This actu-
ally ensures zero information loss in the compressed graph. How-
ever in some other cases, as shown in Figure 3(b), it is also useful to
group a clique of nodes with the same external connection together.
Specific rendering as in Figure 3(b) can be applied to differentiate
between compressed nodes with isolated sub-nodes and fully con-
nected sub-nodes (clique).

A straightforward method is to set wii = 1 for all the diagonal
cells. But this prohibits the grouping of isolated nodes (Figure
3(b)). To achieve the optimal CNG performance as in Figure 3(c),
we devise a two-step hybrid approach. In the first step, the graph
adjacency matrix W is set to wii = 0, allowing the grouping of iso-
lated nodes. In the second step, W is reset to wii = 1 and all the
original nodes not aggregated in the first step are grouped again.

4.3 Controlling the Compression Rate

As introduced above, CNG is a deterministic algorithm that for the
same original graph, it always produces the same compressed graph
and also the same visualization. In the real usage, the user would
like to control the level of details after the compression: on one
hand, for graphs still large after CNG, more node groupings are
expected to further reduce the visual complexity for analysis; on
the other hand, for graphs with a high compression rate, the user
may want to roll back a little to compensate for the topology mental
map.

Fuzzy Collaborative Node Grouping. The basic idea of fuzzy
CNG is to group nodes with not only the same, but also the sim-
ilar neighbor set, as illustrated in Figure 4(b). Then the compres-

sion rate can be increased by compensating with some information
deviation. The key is to define the pairwise similarity score be-
tween graph nodes under CNG. Here we adopt the standard Jac-
card similarity coefficient between two sample sets A and B by
J(A,B) = |A

⋂
B|

|A
⋃

B| . To also extend the definition to the directed and
weighted graph, we introduce a unified Jaccard similarity compu-
tation between node vi and v j in graph G by ρ = ∑∀k min(wik ,w jk)

∑∀k max(wik ,w jk)
.

Note that for the undirected graph, k = 1, ...,n, and for the directed
graph, k = −n, ...,−1,1, ...,n. Fuzzy CNG is achieved by setting
a similarity threshold ξ , the pair of nodes with ρ ≥ ξ are grouped
together iteratively.

Level of Detail. In contrast to the fuzzy CNG, Level Of Detail
(LOD) control allows the user to access to more details beyond the
fully compressed graph, with a lower compression rate. As shown
in Figure 4(c), the major gain is to maintain the user’s mental map
to a certain kind of graph topology, while CNG or fuzzy CNG will
potentially affect the mental map by grouping too many nodes to-
gether.

LOD is achieved in CNG framework by re-splitting the ag-
gregated mega-node into smaller mega-nodes of the same size.
By default without LOD, the CNG compression level is set to
100%. Using a compression level of β , each mega-node contain-
ing s sub-nodes is partitioned into k smaller mega-nodes where
k = b1+(s−1)× (1−β )c.

4.4 Implementation

Collaborative Node Grouping. The key to implement CNG is to
group nodes with the same row vector. It can be achieved through
an appropriate hash function H(Ri) over the row rector identifiers,
and a hash collision resolution mechanism (e.g. HashMap in Java
implementation). A basic method to create the row vector identifier
is to splice the positive cells into a string, attached with the destina-
tion node IDs. For example, the identifier for R4 in Figure 2(a) can
be “10:1,11:1”, where “:” and “,” are used as delimiters. Directed,
weighted and dynamic graphs can also be supported by encoding
the extended row vectors to identifiers accordingly.

The hash-based implementation has a computation complexity
of O(ND) = O(E), where N is the number of nodes in the original
graph for the traversal, D is the average node degree for splicing
the row vector identifier, E denotes the number of links in the orig-
inal graph. For most graphs, D is much smaller than N and can be
considered a bounded constant. Therefore, the hash-based imple-
mentation of the deterministic CNG works well even for very large
graphs, as shown in Table 1∼4.

Fuzzy Collaborative Node Grouping. To implement fuzzy
CNG, a greedy approach is applied. For each node in the origi-
nal graph, the similarity score between this node and all the nodes
already traversed are computed until one score falls above a thresh-
old (1 + ξ )/2. Then the two nodes are grouped together. Note
that we introduce an approximation here to reduce the complex-
ity: after each node grouping, the new mega-node is represented
by the first sub-node in the group, called the anchor node; for
the following similarity computation with this mega-node, only
the row vector of the anchor node is used. Due to the properties
of the Jaccard coefficient, it is guaranteed that for any two sub-
nodes in the same mega-node after this fuzzy CNG implementa-
tion, their similarity score will be above ξ (we omit the proof here).
The computation complexity for this fuzzy CNG implementation is
O(NN∗D) = O(N2D(1−Γ)) where N∗ is the number of nodes in
the compressed graph due to the pairwise similarity computation.
For large graphs where CNG does not have a significant compres-
sion rate, the performance will be considerable low, as shown in the
line 3 of Table 4.

Shingle Ordering of Row Vectors. We introduce the shingle or-
dering of row vectors as a fast algorithm for the fuzzy CNG on



Table 1: CNG performance evaluation on VAST Challenge dataset.
Data nodes edges nodes edges rate time layout layout

(before) (before) (after) (after) (edges) (compress) (before) (after)
undirected sim=1 409 1613 17 50 96.9% 0.007 0.24 0.084

undirected, sim=0.8 409 1613 16 39 97.6% 0.012 0.242 0.088
undirected, sim=0.5 409 1613 13 23 98.6% 0.006 0.25 0.079

directed sim=1 409 1613 26 82 94.9% 0.005 0.245 0.084

Table 2: CNG performance evaluation on Honeypot dataset.
Data nodes edges nodes edges rate time layout layout

(before) (before) (after) (after) (edges) (compress) (before) (after)
undirected 15380 16353 2 2 99.9% 0.123 10.179 0.079

undirected weighted #bin=10 15380 16353 5 8 99.9% 0.151 10.179 0.692
undirected 44668 45582 2 2 99.9% 0.401 35.09 0.08
undirected 1051595 1158150 2 2 99.9% 4.56 (500) 36.404 0.026

undirected dynamic #win=1 43602 47752 9 16 99.9% 1.27 33.504 0.1
undirected dynamic weighted

#win=1 #bin=10 43602 47752 105 208 99.6% 1.102 33.504 0.946

the unweighted graph. For each row vector Ri, construct the ele-
ment set Ai = {a|wia = 1}. Given any permutation σ : {1, ...,n}→
{1, ...,n}, the shingle of the row vector Ri is defined by Mσ (Ai) =
σ−1(minα∈Ai{σ(α)}). By shingle properties [8], the probability
shingles of set A and B are identical is precisely their Jaccard coef-
ficient J(A,B).

Picking several independent permutations (e.g. min-wise inde-
pendent family [7]) and computing the frequency of having the
same output shingles will approximate the similarities among all
row vectors. By using elaborately designed data structure, the com-
putation complexity can be reduced to O(kN2/N∗) = O(kN/(1−
Γ)) where k is the number of permutations.

4.5 Performance
We evaluate the CNG performance in terms of the visual compres-
sion rate (by the number of edges), the compression time and the
layout time before and after. While the running time varies on dif-
ferent systems, all the evaluations are carried out on the same 64-
bit Windows desktop (Intel Core i7@3.40GHz with 8GB memory).
Table 1∼Table 4 show the performance results. Notably for most
data sets except for the social graphs, CNG achieves a more than
90% compression rate with the basic algorithm or applying a fuzzy
setting. The deterministic CNG can scale to a million of nodes and
multi-millions of edges with a reasonable computation time. The
fuzzy CNG with the optimized shingle implementation supports up
to graphs with 105 nodes and returns results in half a minute.

5 COMPRESSED GRAPH VISUALIZATION

We introduce the visual mapping of the CNG-compressed graph
in this section, along with the interactions to accelerate the graph
analysis.

5.1 Visual Encoding
The right panel of Figure 5 gives an example of the compressed
graph visualization after the basic CNG. As shown in the figure, the
mega-nodes are differentiated from the single-nodes by the node fill
color. The single-nodes have no fill and the mega-nodes have stan-
dard fill colors, with the color saturation mapped to the number
of sub-nodes within the group. The larger group is filled with the
more saturated color. By default, the fill color hue is blue, e.g. the
top-right node “192.168.1.10+”. For the mega-nodes created by the
fuzzy CNG, e.g. the one with a label “192.168.2.11+”, the node
fill color will gradually shift to green and then to brown, accord-
ing to the smallest pairwise similarity score within the group. The
mega-node containing sufficiently dissimilar nodes will lead to a
pure brown fill color. We do not use the node size to represent the
group size of the mega-node, since the group size normally has a
rather biased distribution. The large groups will introduce unneces-
sary visual complexities which counters our initial design goal.

Node labels of the mega-node are created by aggregating the la-
bels of the sub-nodes in the original graph. Due to the space limi-
tation, an abstracted label is drawn on each mega-node as the node
identifier. The full label is only visible upon a mouse-over or click

Table 3: CNG performance evaluation on Data Center dataset.
Data nodes edges nodes edges rate time layout layout

(before) (before) (after) (after) (edges) (compress) (before) (after)
undirected 6509 18347 433 2626 85.7% 0.538 4.885 0.402

undirected weight #bin=10 6509 18347 434 2636 85.6% 0.132 4.885 0.37
undirected compress=0.8 6509 18347 1565 5428 70.4% 0.151 4.885 0.427

undirected sim=0.5 6509 18347 340 1510 91.8% 0.364 4.885 0.336

Table 4: CNG performance evaluation on Social Network dataset.
Data nodes edges nodes edges rate time layout layout

(before) (before) (after) (after) (edges) (compress) (before) (after)
tweet undirected 88382 122976 27715 66858 45.6% 2.074 too long (500) 0.522
tweet undirected
sim=0.5 shingle 88382 122976 25292 59873 51.3% 24.92 too long (500) 0.547

tweet undirected
sim=0.5 anchor 88382 122976 26672 63089 48.7% 370.121 too long (500) 0.733

comment undirected 229566 320786 76415 200034 37.6% 3.653 too long (500) 0.502
retweet undirected 306139 1294210 159639 1088208 15.9% 20.797 too long (500) 139.806
follower undirected 263175 2926986 182835 2574823 12% 32.835 too long (500) 95.1

action, as on the node “192.168.1.10+”. The group size of each
mega-node is drawn below the visual node, together with the intra-
group similarity score if applicable. By default, straight lines are
used to represent the links in the compressed graph, with the line
thickness mapped to the summed value of the link counts of all the
corresponding links in the original graph.

In the implementation, we also support flexible mappings of
the compressed graph attributes into the visuals. For example, the
mega-node fill color can be set by the summed node degree from the
original graph. The node label can be any information attached, e.g.
the alphabetical icons on each node of Figure 5 indicate the type of
anomalies happen on the node. The link thickness can also show the
number of original links, or the maximal/minimal/average/median
attribute value within the aggregated link group, other than the
summed value.

For the dynamic graph CNG, the link color is used to indicate the
different temporal patterns on the link. As shown in Figure 11(c),
each link is drawn as several colored segments from the selected
node. Each segment corresponds to one time window on the data,
with the color ranging from orange to blue. The length of each seg-
ment is proportional to the summed link weight on the time window.

5.2 Interaction Design

The visualization supports several basic graph interactions, includ-
ing the geometric zoom&pan, node drag&drop, node/link high-
light&selection, as well as the various node/link visual mappings
mentioned above. Beyond that, more controls over the CNG setting
are accessible through a control panel as in the left of Figure 5. In
the “Compression Options” section, multiple checkboxes work as
switches for the basic, directed, weighted and dynamic graph CNG.
For the weighted graph CNG, the link weight mapping from the
graph attribute can be specified. In case the link weight is normal-
ized, a bin number can be selected to discretize the link weight. For
the dynamic graph CNG, time window size can be set to allow dif-
ferent temporal granularity in the graph aggregation. In the “Com-
pression Level” and “Compression Similarity” sections, a larger or
smaller compressed graph is tunable by the LoD control and the
fuzzy CNG over the basic algorithm, as described in Section 4.3.

Complementary to the automatic CNG compression, we also in-
troduce the manual node grouping/splitting interaction as in many
cases the users have their own criteria towards a best graph abstrac-
tion. This interaction is applicable for both the original graph and
the compressed graph with any CNG settings. In a manual group-
ing process, the user can either select a collection of nodes and
click the “group” button in the navigation panel, or use drag-and-
drop to group one node into another once per time. In the drag-
and-drop process, the pairwise similarity scores with all the other
nodes are shown as visual hints to facilitate the interaction. The
resulting node has the same visual mapping with the mega-node in
the compressed graph. In a manual splitting process, the user can
either select some mega-nodes and click the “split” button, or just
double-click one mega-node. The mega-node grouped by the fuzzy



Figure 5: The user interface for the compressed graph visualization:
the left panel includes various controllers for the compression oper-
ation, the right panel is the main window for the graph visualization.
The graph data is the security traffic flows in VAST Challenge 2011
data set.

CNG (intra-group similarity score below one) will collapse to sev-
eral mega-nodes after the basic CNG, and the mega-node after the
basic CNG will collapse to the original sub-nodes. Further, if a
double-click happens on a single node, this node will be checked
to group with all the other single/mega-node in the graph under the
current CNG setting.

Both the compressed graph and the original graph support some
existing large graph analysis interactions. A useful tool is the
node/edge filtering as in the bottom of the control panel in Figure
5. In the “node” tab, the user can filter the graph according to the
node importance. By default, the node count by summing its inci-
dent edge counts is used. A node count distribution is shown on top
of the slider to suggest a better filter setting. In the “edge” tab, the
graph is filtered according to the edge count, the nodes not incident
to any important edge are removed in the final graph. The mapping
of the node/edge filtering criteria can be manually adjusted accord-
ing to the available graph data attributes.

5.3 Layout and Animated Transition

We apply the force-directed layout algorithm in Kamada-Kawai
model [25] with the stress majorization solver [16] for most com-
pressed graphs with less than 103 nodes. For the original huge
graph and the compressed graph still large, the multi-level force-
directed layout algorithm from GraphViz tool [22] is used, which
scales to graphs with 105 nodes in a reasonable time.

However, the key challenge here is not on the layout computa-
tion, but on how to keep the user’s visual momentum across consec-
utive views, especially when switching between the original graph
and the compressed graph. In this paper, we introduce two orthog-
onal methods to achieve that: a stable layout method to minimize
the gap between the consecutive graph views, and a customized an-
imated transition “morphing” from the previous layout to the cur-
rent.

The stable layout method is integrated with the iterative solver
of the Kamada-Kawai model. The goal is to set an initial layout
for the current graph as close as possible to the previous one, then
the layout after computation will be reasonably stable without los-
ing the graph aesthetics. The core idea is to maintain the latest
positions for both the mega-nodes in the compressed graph and all
the single/sub-nodes in the original graph. When manipulating the
compressed graph, the latest positions of each sub-node is also up-
dated along with the mega-node it belongs to. The initial layout of
a mega-node will be its latest position if it is in the previous graph.
Otherwise, the latest positions of all its sub-nodes are retrieved and
the average position is taken as the initial layout of the mega-node.
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Figure 6: AFC network topology. Acceptable flow rules are listed
on the top right. Anomaly icons representing incidents from IDS,
firewall, system and Nessus logs are depicted on the top left.

This approach works for all the layout changes in the compressed
graph interactions.

Staged animations are designed upon the transition between
graph views. In the first stage, the single/mega-node not in the cur-
rent graph will move to the initial position of a new mega-node in
the current graph to which this single/mega-node belongs. In case
it belongs to no one in the current graph, it just disappears in the
first stage. In the second stage, the nodes new in the current graph
appear in their initial positions as computed. In the last stage, all
the nodes in the current graph move from their initial positions to
the optimal positions according to the layout algorithm.

6 CASE STUDY

6.1 Network Situation Awareness
We evaluate our graph visualization tool with CNG on the VAST
2011 Mini Challenge-II dataset [1]. The challenge dataset includes
a computer network architecture (Figure 6) of a shipping company
- All Freight Corporation (AFC), its security policy rules, and about
three days of monitoring reports from the corporate network, which
consist of a firewall log, an intrusion detection system (IDS) log, an
aggregated file of system logs, and a Nessus network vulnerability
scan report.

Network traffic graphs are constructed by aggregating the net-
work flows recorded in the firewall and IDS logs. Each flow is rep-
resented by the IP address of the source and destination host, as well
as the flow start/end timestamps. Note that we drop the host port
number and use IP address only to reduce the graph size. The raw
flow entries are further segmented by time and placed into several
bins based on a time window setting (an hour by default) to create
a graph for every time window. The network graph of any consec-
utive time windows can be generated by merging the per-window
graphs.

Over the graphs, we attach the anomalies pre-computed from the
data to speedup the human analysis. For the firewall logs, we trans-
late from the AFC’s security policy rules into the Acceptable Flow
Rules (AFR) (Figure 6) and detect firewall anomalies by filtering
the firewall log with the AFR. Other types of anomalies are gener-
ated by parsing the IDS (snort), Nessus, and system logs. Figure
6 lists the type and source of anomalies we detect in this case and
also the anomaly icons representing them in the graph. Note that,
for an anomaly on a flow (e.g. firewall and IDS), we further split
it into anomalies on both of its endpoints. The icon colors are used
to differentiate the abnormal flow source (orange) and destination
(grey).

Below we give a detailed user trail to show case how our tool



(a) Original (b) Compressed (c) Compressed with similarity = 0.5

Figure 7: Overview traffic graphs of AFC corporate network with different settings.

Figure 8: The hosts with security holes and the cross-subnet port
scans from 192.168.2.174/175.

helps to increase situation awareness and detects malicious attacks.
Consider John, the computer network operation lead of AFC, is
checking the corporate network status of the recent three days for
noteworthy events. He starts by loading the whole network graph in
this period, as shown in Figure 7(a). Because the view is too messy,
he continues by applying the basic CNG to create a compressed net-
work graph, as shown in Figure 7(b). From this graph, he quickly
learns some key hosts in the period (e.g. 1.2, 1.14. “192.168.” is
omitted throughout this study), but still feel a little prohibitive to
proceed to details. He decides to further simplify the graph by us-
ing the fuzzy CNG with a similarity score of 0.5. The resulting
graph in Figure 7(c) is clear enough for his overview purpose: the
hosts in the central fuzzy node group (1.2, 1.6, 1.14 and 2.171-173)
and 2.174, 2.175 are all of the hub nodes in the graph.

Port Scan & OS Security Holes.
Based on the AFC network structure (Figure 6), John bypasses

three server machines (1.2, 1.6, 1.14) which routinely communicate
with all the hosts for DNS/data services. Also in his knowledge, the
suspicious behaviors of a hub node, e.g. port scan, often associate
with the OS security holes. So he clicks on the “OS security hole”
anomaly type and highlights all the hosts with such anomaly on the
graph. To drill-down to the individual hosts, he splits the fuzzy
group and locates 2.171-2.175 as the threats. He finds that 2.174
and 2.175 are more dangerous because they have a higher port-scan
rate (by the link thickness) and also initiate cross-subnet floods to
1.10-250 where many hosts do not have physical machines. The
screenshot with the temporal anomaly view of 2.174 and 2.175 is
given in the right panel of Figure 8.

DoS Attacks
A critical server John examines in the following is the AFC’s ex-

ternal web server (172.20.1.5). With the CNG-compressed graph,
the web server is easily found as it has outstanding connection pat-
terns from the other hosts. A single click on the node shows up a
noteworthy anomaly icons (I) on the morning of the first day, sug-
gesting that there could be Denial-of-Service (DoS) attacks at that
time. John further drills down to that period with the time range se-
lector and highlight the web server’s egocentric traffic graph. Fig-
ure 9 confirms the potential DDoS attacks from the external hosts
10.200.150.201, 206-209, due to the anomalies happened simulta-

Figure 9: DoS attacks against the corporate web server (172.20.1.5)
from 10.200.150.201, 206-209 indicated by the anomaly icon (I).

Figure 10: Email exchanges with an external host (10.200.150.6)
and the undocumented computers (192.168.2.251/254).

neously with the web server.
Social Engineering and Undocumented Computer
Based on the existing inputs from the visualization, John is

able to manually construct a graph by combining the CNG hints
and the subnet attribute of the hosts. As given in Figure 10,
the semi-automatically compressed graph shows the connections
among hosts with different usages/subnets. John keeps the mail
server (1.6) standalone, as he wants to check the email exchanges
between AFC and outside. Clearly, an external host 10.100.150.6
have a bi-directional email exchanges with the AFC mail server, as
indicated in the temporal anomaly view. This finding can be exam-
ined further as a clue for potential social engineering attacks.

As indicated in Figure 6, the AFC workstations have an IP range
from 192.168.2.10 to 192.168.2.250. However, in the compressed
graph (Figure 10), two new IPs (2.251 and 2.254) appear that is
outside the IP range. What more suspicious is the host 2.251, which
even has a two-way communications with the external web server
at the end of the period.

Note that in our future plan, the tool will support streaming net-
work traffic, then John will be able to access the real-time traffic
patterns and increase the timeliness in detecting the events.

6.2 Honeypot Monitoring
Another security-related scenario our tool works well is the Honey-
pot monitoring. In this case, a networked computer, called the hon-



eypot, is deployed in the corporate network or the Internet to mit-
igate potential threats to the organization’s network and to collect
the attacker’s behaviors and patterns for further security researches.
The honeypot data set we worked on comes from the VizSec com-
munity [2] and is provided in [31]. The dataset contains 14 million
labeled flows and 7 million alerts from a single honeypot lasting
about six days. Flows can be broken down into types of SSH, FTP,
HTTP, AUTH/IDENT, IRC and OTHERS. The traffic data is pre-
processed by making SQL queries linking flow and alert tables and
sorting the output into bins based on the time window (e.g., one
hour). The connections are finally transformed into graphs together
with alerts attached on the nodes. The alert icon/type pairs in this
data are “A”/AUTH, “F”/FTP, “I”/ICMP, “R”/IRC, “S”/SSH.

The network administrator or researcher can visualize the
honeypot-centric network using our tool. Take a seven-hour trace
as an example, the initial view (Figure 11(a)) is overwhelmed
by the connected hosts. After the compression with the di-
rected graph CNG, a very clear graph shows up (Figure 11(b)),
which contains only three nodes: 146.217.254.148 (the honey-
pot), 103.53.0.211+ (9 hosts that the honeypot scans without re-
sponses), and 187.79.2.4+ (507 hosts the honeypot communicates
bidirectionally). By setting the link aggregation to the “average”
mode, it can be found that the 507 hosts have a larger “to honey-
pot” traffic than the “from” traffic (potential attackers), while the
9 hosts merely set up one flow with the honeypot in average. To
access dynamic patterns of the attackers, the user can check the
“temporal” option and generate a compressed version of the dy-
namic graph, which exploits different groups of temporal connec-
tions with the honeypot (Figure 11(c)). A group of nodes in this
graph, 187.79.2.4+ (206 hosts), show an abnormal traffic burst in
the beginning of the time period. Combined with the outstanding
“F”/FTP icon on the node, it suggests that the honeypot has been
compromised early in this period by these attackers, and numerous
FTP attacks to subnets of IP prefixes are tried with weak SSH pass-
words. Further splitting and re-compressing this node group with
both the “weighted” and “temporal” options reveals the suspected
FTP attackers (the red nodes in Figure 11(d)) with a significant traf-
fic volume to the honeypot.

6.3 Data Center
In this case, we have tried our technique on the traffic flow graph
among data centers. The traces are collected from a large corporate
in the typical NetFlow format, containing statistics of the flows, i.e.,
timestamp, flow sequence, src/dst IPs and ports, duration, packets,
flags, etc. The original data was divided into bins of 15-minute time
window for analysis.

Figure 12(a) shows the original flow graph with 6509 nodes and
18347 edges. For a cleaner visualization of the overall topology, a
smaller graph containing only 50 nodes are displayed through the
node filtering (Figure 12(b)). Nevertheless, The topology is pre-
served much better with node filtering over the compressed graph
(Figure 12(c)) than directly on the original graph.

6.4 Social Network
We also experiment CNG on the widespread social network graphs.
The dataset we apply is from KDD Cup 2012 Track-I [3], which
is about the social networks on Tencent Weibo, one of the largest
micro-blogging websites in China. There are 4710 unique items
(person, organizations or groups) being recommended to 1392873
unique users, who either accept or reject the recommendations. We
select the top K (K=10) popular items accepted by the users as well
as the top K popular users followed by the other users. For each
popular item and user, we generate the below graphs: 1) User fol-
lowing graph; 2) Interaction (tweet) graph; 3) Interaction (retweet)
graph; and 4) Interaction (comment) graph. The CNG performance
on these social graphs are given in Table 4. While CNG does per-
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Figure 13: User experiment results showing the median, 5th/95th
and 1st/99th percentile.

form good in the running time scaling to very large graphs, the re-
sults in terms of the compression rate are not satisfying in this case,
suggesting the future works in dealing with the small-world graphs.

7 USER EXPERIMENT

We conducted an experiment to compare the graph visualization
tool with CNG (compressed) and without CNG (original). Partic-
ipants were asked to perform several graph analysis tasks on the
VAST Challenge 2011 dataset with both tools. We measured the
performance time for each task, and the accuracy. Following the
tasks with each tool, participants responded to a quantitative ques-
tionnaire regarding their experience and also provided verbal feed-
backs.

Task
Four tasks are designed on the traffic graph of the AFC corporate

network.
T1: Estimate the number of servers/hosts in the network and the

number of distinct flows between pairs of servers/hosts. This is to
evaluate the user’s basic understanding of the graph scale according
to the tool.

T2: Find out all the hub servers/hosts in the network with more
than 100 connections. The hub nodes are the basis to understand
the graph topology.

T3: Find out all the hub servers/hosts in the network suspected
to have illegal behaviors (e.g. malicious port-scan). This is to eval-
uate the ability to combine the graph topology with the content (IP
address) for the analysis.

T4: Find out a server/host external to the AFC network and ever
has email exchanges with the AFC host machines. This is to evalu-
ate the performance in checking details with the graph.

Design
Our experiment follows the within-subject design principle.

Each participate performs all the tasks with each of the tool. To
avoid the learning and ordering effects, we map the key IP addresses
in the raw VAST Challenge data into a new set of IPs to create two
similar data sets. The users are partitioned into four groups with
different combinations of the tool usage order and the data set. Be-
fore the user performs the task with each tool, a training session is
also conducted with an irrelevant sample data on the basic visual
encoding and interaction methods of the tool. Participants are told
to complete the tasks without any pause in a best-effort manner.
Approximately 3 minutes are given as a deadline for each task.



(a) Original (b) Directed CNG (c) Dynamic CNG (d) Dynamic&Weighted CNG

Figure 11: CNG-compressed graph visualization for a single honeypot’s view.

(a) Original (b) Filter to 50 nodes from the original graph (c) Filter to 50 nodes from the compressed graph

Figure 12: Data center flow graph visualization in the original tool, with the node filter and after integrating the CNG method.

Apparatus
The experiment was ran on a standard laptop with a 2.4 GHz

Intel Core 2 Duo processor, 3GB memory, a 1440 x 900 15 wide-
screen LCD display, and an optical mouse. The software was writ-
ten in Java 1.6 and ran from the Windows XP command line.

Participant
Eight participants (7 male, 1 female), with ages ranging from

23 to 36 years, attended the experiment. All of them are technical
persons with a computer science background. A half even have ex-
periences with network/system administration, which accounts for
the bias of the gender distribution. We select this sample with more
professionals because the graph visualization tool in this scenario
mainly targets for the network administrators with rich experiences.

Result
The experiment results are summarized in Figure 13.
Accuracy: As in Figure 13(a), on the estimation of graph nodes,

the tool with CNG performs much better. An analysis of vari-
ance (ANOVA) test shows a significant difference on the error rate
(F(1,14) = 9.72, p < .01). On the graph edges, CNG has a lower
error rate in average, but not significant enough. Note that the com-
pressed graph has a tendency to underestimate the number of edges
for user, while the original graph has the opposite tendency. In the
other tasks, the accuracy rates are not significantly different (Fig-
ure 13(b)), although on T2 and T4 where most users can work out
the correct answer, the accuracy rate variances of CNG are much
smaller.

Performance Time: CNG spends slightly longer time in complet-
ing the node/edge estimation task (Figure 13(c)), but leads to a more
accurate result. On the performance times of T2 to T4, still similar
to the accuracy rate, Users spend shorter time on T2 and T4 with
CNG, with a significance on T4 (F(1,14) = 6.85839, p < .05).

In summary, the graph visualization with CNG shows advantage
over the original one in estimating the graph scale, especially on
the number of nodes. The accuracy and performance time are also
better with CNG in understanding the topology and accessing the
details. Specially, CNG is significantly quicker in drilling down
to the details. On the other hand, both the tools do not perform
well in combining the graph topology with the subject content on
nodes/edges, which suggests a future improvement on the graph

attribute visual analysis.
Subjective Feedback and Observation
Surprisingly, the subjective feedbacks from the users demon-

strate an unanimous favor towards CNG (Figure 13(d)). The
ANOVA test shows a significant difference (F(1,14) > 20, p <
.001) on the work load and readability; and a less significant dif-
ference (F(1,14) > 8, p < .01) on the easy-to-use and confidence.
The users stated the CNG tool as “simple to use”, “low amount of
work”, “the highest amount of confidence”, “pretty good readabil-
ity”, although “not fully automated”, “require some efforts as the
first time user”. In comparison, the original tool is stated as “kind of
pain to use”, “not readable because it’s cluttered”, “no confidence
being able to pick up anything other than wide guess”, “random,
probably bad for large data”. A user even stated for the CNG: “In
terms of graphical tools, this is cleaner than many commercial tools
that I have used such as HP Openview”. We also observed an inter-
esting fact that when the users work with the original graph, they
use a lot of interactions, e.g. zoom & pan, trying to understand the
graph. While working with the CNG-compressed graph, few users
move the graph greatly. As the user said, it already gives a near
perfect summarization.

8 CONCLUSION

In this paper, we propose the Collaborative Node Grouping (CNG)
method to visually condense the huge graph without sacrificing any
graph information. It is shown that CNG can effectively reduce the
scale of many real-world graphs and still preserve critical features
of the original graph. The classical node-link representation is in-
troduced to visualize the CNG-compressed graph, with carefully
designed visual encoding, stable layout and animated transition to
provide the user with ease and interactivity in analyzing with the
compressed graph. We showcase the application of the graph visu-
alization tool with CNG in four use cases, as well as the usage of
CNG extensions to the directed, weighted and dynamic graphs. A
controlled user study on the effectiveness of CNG suggests that a
lot of domain users can benefit from the method and are more en-
joyable in the graph overview and detail analysis tasks with CNG.
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